Mathematical Science in Health Research

Outline

- Initial mapping/directory of existing work
- Ideas for pilot projects

- Healthcare insurance
 - Risk taking/predisposition
 - Anonymization
 - Forecasting
 - working on aging problem, forecasting societal implication (Southampton uni)
- Mobile data
 - Micro-finance
 - Disease monitoring (Brazil epilepsy/brain)
 - Surveillance/monitoring
 - Sector integration of human and animal health
 - Data collection optimization

- Resource allocation (EWGLA, VEROLOG)
 - Location of facilities, routing, matching
 - Public service providers
 - Optimising interactions given resource limitations
 - Risk maps
- Emergency preparedness e.g. fever study in Nigeria
 - Using algorithm to classify symptoms to improve diagnosis, data mining, deep learning, clustering
- Adaptive control novel disease outbreak
 - Optimise policy switching, multi-phase
- Disease modelling
 - Water borne (South Africa)
 - Temporal dynamics
 - Model selection
 - Model fitting

- Social determinants life style complex diseases (AIMS in Ghana)
 - Deep learning predicting
 - Making AI transparent
- Personalised medicine
 - Statistical models, data mining, linear algebra, numerical analyses
- Drug target network
 - Graph/network theory
- Vaccine design (EBI data dimensionality)
 - Antigen mapping
 - Clustering
 - Supervised/unsupervised

- Record linkage, health data quality, probabilistic models (DFID Tanzania)
- Fraudulent claims, lack of unique IDs
 - Data imputation, algorithm
- Social network seeding interventions
 - Epidemic spreading models
 - Network development
- Modelling vaccination and cost effectiveness
- Impact assessment
 - ODEs

• Clinical imaging e.g. CAT scans, mobile picture